Ask a question or
Order this book


Browse our books
Search our books
Book dealer info



Title: Reelle Zahlen. Das klassische Kontinuum und die natürlichen Folgen Springer-Lehrbuch Das Klassische Kontinuum Und Die Naturlichen Folgen Oliver Deiser Dieser Reelle Zahlen Mathematik Informatik Mathe deskriptive Mengenlehre Maths Mathematische Grundlagen Zahlentheorie Masse reelle Zahlen Unendliche Spiele Allgemeines Lexika Der Autor untersucht die reellen Zahlen unter verschiedenen grundlagentheoretischen Gesichtspunkten und macht die Komplexität dieser einzigartigen mathematischen Grundstruktur sichtbar. Im ersten Teil: die arithmetische Zahlengerade – die Entdeckung der irrationalen Zahlen, das Kontinuumsproblem, moderne Konstruktionsmöglichkeiten. Nach einer Analyse euklidischer Isometrien, behandelt er ausführlich Grundfragen der Masstheorie
Description: , Springer, 2008. 541, 23,6 x 15,2 x 3,2 cm, Softcover. Zustand: 2. Der Autor untersucht die reellen Zahlen unter verschiedenen grundlagentheoretischen Gesichtspunkten und macht die Komplexität dieser einzigartigen mathematischen Grundstruktur sichtbar. Im ersten Teil: die arithmetische Zahlengerade – die Entdeckung der irrationalen Zahlen, das Kontinuumsproblem, moderne Konstruktionsmöglichkeiten. Nach einer Analyse euklidischer Isometrien, behandelt er ausführlich Grundfragen der Masstheorie (u.a. Probleme des Messens, Banach-Tarski-Paradoxon, Existenz bewegungsinvarianter Inhalte). Im zweiten Teil: der zu den irrationalen Zahlen homöomorphe Raum aller Folgen natürlicher Zahlen, allgemeine polnische Räume. Das Buch untersucht die reellen Zahlen unter verschiedenen grundlagentheoretischen Gesichtspunkten. Ziel ist, die Komplexität dieser einzigartigen mathematischen Grundstruktur sichtbar zu machen. Im ersten Teil richtet sich der Blick auf die arithmetische Zahlengerade. Der Bogen spannt sich hier zunächst von der Entdeckung der irrationalen Zahlen durch die alten Griechen über das Kontinuumsproblem bis hin zu modernen Konstruktionsmöglichkeiten. Nach einer Analyse euklidischer Isometrien werden dann ausführlich Grundfragen der Masstheorie behandelt (Probleme des Messens, Banach-Tarski-Paradoxon, Existenz bewegungsinvarianter Inhalte, Fortsetzungen des Lebesgue-Masses).Der zweite Teil des Buches untersucht den zu den irrationalen Zahlen homöomorphen Raum aller Folgen natürlicher Zahlen und allgemeiner polnische Räume. Die Themen umfassen Regularitätseigenschaften von Teilmengen reeller Zahlen, irreguläre Mengen, Borel-Mengen und projektive Mengen. Das Buch schliesst mit einer Einführung in die Theorie der unendlichen Zweipersonenspiele. In einer lockeren und einprägsamen Sprache behandelt der Autor Charakterisierungen und Konstruktionen mit Hintergründen und Querverbindungen. Er streift dabei durch viele Räume des Gebäudes der modernen Mathematik wie Logik, Masstheorie und Topologie. Dennoch ist der Text autark geniessbar, auch in Abschnitten, da technisch Kompliziertes jeweils anschaulich referiert wird. … Eingefügte, meist leichte Aufgaben regen zu aktivem Mitdenken an. … er bietet Lesern jeglichen mathematischen Niveaus vielfältige neue Blickrichtungen und Einsichten …" (Wolfgang Grölz, in: ekz-Informationsdienst, 2007, Issue 19) " Oliver Deiser hat wieder ein hervorragend lesbares Lehrbuch vorgelegt, das man nur uneingeschränkt empfehlen kann. Im Gegensatz zu anderen Autoren geht es Deiser ganz offenbar nicht darum, durch überzogene Abstraktion den Eindruck von Wissenschaftlichkeit zu erzeugen, sondern er will verständlich erklären und dabei die mathematische Exaktheit nicht preisgeben. Das ist ihm … ausserordentlich gelungen. Es ist eines derjenigen Bücher, das ich jedem ernsthaft an Mathematik interessierten Menschen nur wärmstens empfehlen kann." (Prof. Dr. Thomas Sonar, in: Mathematische Semesterberichte, 2008, Issue 8) "… Das Buch ist eine sehr zu empfehlende Lektüre für jeden, der eine grossartige menschliche Kulturleistung besser verstehen will. Der Stil ist sehr gut lesbar. Formale Definitionen und Beweisschritte werden immer zuerst anschaulich beschrieben und überzeugend motiviert Insbesondere durch die Einbettung in den historischen Kontext wird die Entwicklung der Konzepte schön verdeutlicht. Sehr hilfreich für das Verständnis sind die zahlreichen Übungsaufgaben Für Studenten mit den Kenntnissen aus den Grundvorlesungen ist das Buch uneingeschränkt zu empfehlen."(in: Rho – Mathematik Verein Uni Rostock Ein Ausnahmetalent dieser Oliver Deiser. Viele Studierende der Mathematik haben noch nach Jahren des Studiums grosse Schwierigkeiten mit dem Aufbau des Zahlsystems - hätten sie doch nur Deiser gelesen! In diesem Buch bleiben keine Fragen unbeantwortet, kein Unklarheiten bleiben bestehen. Deiser versteht es meisterhaft, den Aufbau der reellen Zahlen mit der Masstheorie und der Topologie zu verbinden. Und das noch mit einer echten schriftstellerischen Ader, so dass das Lesen und Lernen Freude macht. Grossartig! Mathematik literarisch! Dieses Buch ist ein Juwel. Schon das Vorwort ist den halben Preis wert. Der Rezensend kann als Fachfremder, als Liebhaber der Mathematik keine Empfehlungen für das universitäre Publikum geben, wohl aber für seinesgleichen. Das Buch muss man haben, weil es den verwaschenen eigenen Eindruck, dass die reellen Zahlen unergründlich, nebelhaft und faszinierender als irgend ein anderer mathematischer Gegenstand sind bestätigt und zugleich präzisiert und später auflöst. Trotzdem: nach seiner Mengenlehre und den Reellen Zahlen habe ich den grossen Wunsch, dass der Autor uns noch ein Buch über das Komplexe schreibt. Inhalt: Einführung.- Die Themen des Buches.- Strukturierter Inhalt.- Vokabular.- Erster Abschnitt: Das klassische Kontinuum.- Irrationale Zahlen. Intermezzo: Zur Geschichte der Analysis. Mächtigkeiten. Charakterisierungen und Konstruktionen. Euklidische Isometrien. Inhalte und Masse. Die grenzen des Messens. Zweiter Abschnitt: Die Folgenräume.- Einführung in den Baireraum. Toplogische Untersuchungen. Regulatitätseigenschaften. Intermezzo: Wohlordnungen und Ordinalzahlen.- Irreguläre Mengen. Unendliche Zweipersonenspiele. Borelmengen und projektive Mengen. Anhänge.- Die axiomatische Grundlage. Natürliche, ganze und rationale Zahlen. Algebraische Strukturen. Topologische und metrische Räume. Lebensdaten. Notationen. Personen. Index. Reihe / Serie Springer-Lehrbuch Sprache deutsch Masse 155 x 235 mm Einbandart Paperback Mathematik Informatik Mathe deskriptive Mengenlehre Maths Allgemeines Lexika Mathematische Grundlagen Masse reelle Zahlen Unendliche Spiele Zahlentheorie ISBN-10 3-540-45387-3 / 3540453873 ISBN-13 978-3-540-45387-1 / 9783540453871 Reelle Zahlen. Das klassische Kontinuum und die natürlichen Folgen (Springer-Lehrbuch): Das Klassische Kontinuum Und Die Naturlichen Folgen von Oliver Deiser Dieser Reelle Zahlen ISBN: 3540453873. Gewicht/weight: 830 gr.

Keywords: Mathematik Informatik Mathe deskriptive Mengenlehre Maths Allgemeines Lexika Mathematische Grundlagen Masse reelle Zahlen Unendliche Spiele Zahlentheorie ISBN-10 3-540-45387-3 / 3540453873 ISBN-13 978-3-540-45387-1 / 9783540453871 Reelle Zahlen. Das klass

Price: EUR 169.00 = appr. US$ 183.68 Seller: LLU Buchservice
- Book number: BN11804